mirror of
https://gitlab.com/pulsechaincom/go-pulse.git
synced 2024-12-24 20:37:17 +00:00
289b30715d
This commit converts the dependency management from Godeps to the vendor folder, also switching the tool from godep to trash. Since the upstream tool lacks a few features proposed via a few PRs, until those PRs are merged in (if), use github.com/karalabe/trash. You can update dependencies via trash --update. All dependencies have been updated to their latest version. Parts of the build system are reworked to drop old notions of Godeps and invocation of the go vet command so that it doesn't run against the vendor folder, as that will just blow up during vetting. The conversion drops OpenCL (and hence GPU mining support) from ethash and our codebase. The short reasoning is that there's noone to maintain and having opencl libs in our deps messes up builds as go install ./... tries to build them, failing with unsatisfied link errors for the C OpenCL deps. golang.org/x/net/context is not vendored in. We expect it to be fetched by the user (i.e. using go get). To keep ci.go builds reproducible the package is "vendored" in build/_vendor.
244 lines
5.7 KiB
Go
244 lines
5.7 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package scrypt implements the scrypt key derivation function as defined in
|
|
// Colin Percival's paper "Stronger Key Derivation via Sequential Memory-Hard
|
|
// Functions" (http://www.tarsnap.com/scrypt/scrypt.pdf).
|
|
package scrypt // import "golang.org/x/crypto/scrypt"
|
|
|
|
import (
|
|
"crypto/sha256"
|
|
"errors"
|
|
|
|
"golang.org/x/crypto/pbkdf2"
|
|
)
|
|
|
|
const maxInt = int(^uint(0) >> 1)
|
|
|
|
// blockCopy copies n numbers from src into dst.
|
|
func blockCopy(dst, src []uint32, n int) {
|
|
copy(dst, src[:n])
|
|
}
|
|
|
|
// blockXOR XORs numbers from dst with n numbers from src.
|
|
func blockXOR(dst, src []uint32, n int) {
|
|
for i, v := range src[:n] {
|
|
dst[i] ^= v
|
|
}
|
|
}
|
|
|
|
// salsaXOR applies Salsa20/8 to the XOR of 16 numbers from tmp and in,
|
|
// and puts the result into both both tmp and out.
|
|
func salsaXOR(tmp *[16]uint32, in, out []uint32) {
|
|
w0 := tmp[0] ^ in[0]
|
|
w1 := tmp[1] ^ in[1]
|
|
w2 := tmp[2] ^ in[2]
|
|
w3 := tmp[3] ^ in[3]
|
|
w4 := tmp[4] ^ in[4]
|
|
w5 := tmp[5] ^ in[5]
|
|
w6 := tmp[6] ^ in[6]
|
|
w7 := tmp[7] ^ in[7]
|
|
w8 := tmp[8] ^ in[8]
|
|
w9 := tmp[9] ^ in[9]
|
|
w10 := tmp[10] ^ in[10]
|
|
w11 := tmp[11] ^ in[11]
|
|
w12 := tmp[12] ^ in[12]
|
|
w13 := tmp[13] ^ in[13]
|
|
w14 := tmp[14] ^ in[14]
|
|
w15 := tmp[15] ^ in[15]
|
|
|
|
x0, x1, x2, x3, x4, x5, x6, x7, x8 := w0, w1, w2, w3, w4, w5, w6, w7, w8
|
|
x9, x10, x11, x12, x13, x14, x15 := w9, w10, w11, w12, w13, w14, w15
|
|
|
|
for i := 0; i < 8; i += 2 {
|
|
u := x0 + x12
|
|
x4 ^= u<<7 | u>>(32-7)
|
|
u = x4 + x0
|
|
x8 ^= u<<9 | u>>(32-9)
|
|
u = x8 + x4
|
|
x12 ^= u<<13 | u>>(32-13)
|
|
u = x12 + x8
|
|
x0 ^= u<<18 | u>>(32-18)
|
|
|
|
u = x5 + x1
|
|
x9 ^= u<<7 | u>>(32-7)
|
|
u = x9 + x5
|
|
x13 ^= u<<9 | u>>(32-9)
|
|
u = x13 + x9
|
|
x1 ^= u<<13 | u>>(32-13)
|
|
u = x1 + x13
|
|
x5 ^= u<<18 | u>>(32-18)
|
|
|
|
u = x10 + x6
|
|
x14 ^= u<<7 | u>>(32-7)
|
|
u = x14 + x10
|
|
x2 ^= u<<9 | u>>(32-9)
|
|
u = x2 + x14
|
|
x6 ^= u<<13 | u>>(32-13)
|
|
u = x6 + x2
|
|
x10 ^= u<<18 | u>>(32-18)
|
|
|
|
u = x15 + x11
|
|
x3 ^= u<<7 | u>>(32-7)
|
|
u = x3 + x15
|
|
x7 ^= u<<9 | u>>(32-9)
|
|
u = x7 + x3
|
|
x11 ^= u<<13 | u>>(32-13)
|
|
u = x11 + x7
|
|
x15 ^= u<<18 | u>>(32-18)
|
|
|
|
u = x0 + x3
|
|
x1 ^= u<<7 | u>>(32-7)
|
|
u = x1 + x0
|
|
x2 ^= u<<9 | u>>(32-9)
|
|
u = x2 + x1
|
|
x3 ^= u<<13 | u>>(32-13)
|
|
u = x3 + x2
|
|
x0 ^= u<<18 | u>>(32-18)
|
|
|
|
u = x5 + x4
|
|
x6 ^= u<<7 | u>>(32-7)
|
|
u = x6 + x5
|
|
x7 ^= u<<9 | u>>(32-9)
|
|
u = x7 + x6
|
|
x4 ^= u<<13 | u>>(32-13)
|
|
u = x4 + x7
|
|
x5 ^= u<<18 | u>>(32-18)
|
|
|
|
u = x10 + x9
|
|
x11 ^= u<<7 | u>>(32-7)
|
|
u = x11 + x10
|
|
x8 ^= u<<9 | u>>(32-9)
|
|
u = x8 + x11
|
|
x9 ^= u<<13 | u>>(32-13)
|
|
u = x9 + x8
|
|
x10 ^= u<<18 | u>>(32-18)
|
|
|
|
u = x15 + x14
|
|
x12 ^= u<<7 | u>>(32-7)
|
|
u = x12 + x15
|
|
x13 ^= u<<9 | u>>(32-9)
|
|
u = x13 + x12
|
|
x14 ^= u<<13 | u>>(32-13)
|
|
u = x14 + x13
|
|
x15 ^= u<<18 | u>>(32-18)
|
|
}
|
|
x0 += w0
|
|
x1 += w1
|
|
x2 += w2
|
|
x3 += w3
|
|
x4 += w4
|
|
x5 += w5
|
|
x6 += w6
|
|
x7 += w7
|
|
x8 += w8
|
|
x9 += w9
|
|
x10 += w10
|
|
x11 += w11
|
|
x12 += w12
|
|
x13 += w13
|
|
x14 += w14
|
|
x15 += w15
|
|
|
|
out[0], tmp[0] = x0, x0
|
|
out[1], tmp[1] = x1, x1
|
|
out[2], tmp[2] = x2, x2
|
|
out[3], tmp[3] = x3, x3
|
|
out[4], tmp[4] = x4, x4
|
|
out[5], tmp[5] = x5, x5
|
|
out[6], tmp[6] = x6, x6
|
|
out[7], tmp[7] = x7, x7
|
|
out[8], tmp[8] = x8, x8
|
|
out[9], tmp[9] = x9, x9
|
|
out[10], tmp[10] = x10, x10
|
|
out[11], tmp[11] = x11, x11
|
|
out[12], tmp[12] = x12, x12
|
|
out[13], tmp[13] = x13, x13
|
|
out[14], tmp[14] = x14, x14
|
|
out[15], tmp[15] = x15, x15
|
|
}
|
|
|
|
func blockMix(tmp *[16]uint32, in, out []uint32, r int) {
|
|
blockCopy(tmp[:], in[(2*r-1)*16:], 16)
|
|
for i := 0; i < 2*r; i += 2 {
|
|
salsaXOR(tmp, in[i*16:], out[i*8:])
|
|
salsaXOR(tmp, in[i*16+16:], out[i*8+r*16:])
|
|
}
|
|
}
|
|
|
|
func integer(b []uint32, r int) uint64 {
|
|
j := (2*r - 1) * 16
|
|
return uint64(b[j]) | uint64(b[j+1])<<32
|
|
}
|
|
|
|
func smix(b []byte, r, N int, v, xy []uint32) {
|
|
var tmp [16]uint32
|
|
x := xy
|
|
y := xy[32*r:]
|
|
|
|
j := 0
|
|
for i := 0; i < 32*r; i++ {
|
|
x[i] = uint32(b[j]) | uint32(b[j+1])<<8 | uint32(b[j+2])<<16 | uint32(b[j+3])<<24
|
|
j += 4
|
|
}
|
|
for i := 0; i < N; i += 2 {
|
|
blockCopy(v[i*(32*r):], x, 32*r)
|
|
blockMix(&tmp, x, y, r)
|
|
|
|
blockCopy(v[(i+1)*(32*r):], y, 32*r)
|
|
blockMix(&tmp, y, x, r)
|
|
}
|
|
for i := 0; i < N; i += 2 {
|
|
j := int(integer(x, r) & uint64(N-1))
|
|
blockXOR(x, v[j*(32*r):], 32*r)
|
|
blockMix(&tmp, x, y, r)
|
|
|
|
j = int(integer(y, r) & uint64(N-1))
|
|
blockXOR(y, v[j*(32*r):], 32*r)
|
|
blockMix(&tmp, y, x, r)
|
|
}
|
|
j = 0
|
|
for _, v := range x[:32*r] {
|
|
b[j+0] = byte(v >> 0)
|
|
b[j+1] = byte(v >> 8)
|
|
b[j+2] = byte(v >> 16)
|
|
b[j+3] = byte(v >> 24)
|
|
j += 4
|
|
}
|
|
}
|
|
|
|
// Key derives a key from the password, salt, and cost parameters, returning
|
|
// a byte slice of length keyLen that can be used as cryptographic key.
|
|
//
|
|
// N is a CPU/memory cost parameter, which must be a power of two greater than 1.
|
|
// r and p must satisfy r * p < 2³⁰. If the parameters do not satisfy the
|
|
// limits, the function returns a nil byte slice and an error.
|
|
//
|
|
// For example, you can get a derived key for e.g. AES-256 (which needs a
|
|
// 32-byte key) by doing:
|
|
//
|
|
// dk, err := scrypt.Key([]byte("some password"), salt, 16384, 8, 1, 32)
|
|
//
|
|
// The recommended parameters for interactive logins as of 2009 are N=16384,
|
|
// r=8, p=1. They should be increased as memory latency and CPU parallelism
|
|
// increases. Remember to get a good random salt.
|
|
func Key(password, salt []byte, N, r, p, keyLen int) ([]byte, error) {
|
|
if N <= 1 || N&(N-1) != 0 {
|
|
return nil, errors.New("scrypt: N must be > 1 and a power of 2")
|
|
}
|
|
if uint64(r)*uint64(p) >= 1<<30 || r > maxInt/128/p || r > maxInt/256 || N > maxInt/128/r {
|
|
return nil, errors.New("scrypt: parameters are too large")
|
|
}
|
|
|
|
xy := make([]uint32, 64*r)
|
|
v := make([]uint32, 32*N*r)
|
|
b := pbkdf2.Key(password, salt, 1, p*128*r, sha256.New)
|
|
|
|
for i := 0; i < p; i++ {
|
|
smix(b[i*128*r:], r, N, v, xy)
|
|
}
|
|
|
|
return pbkdf2.Key(password, b, 1, keyLen, sha256.New), nil
|
|
}
|