go-pulse/core/forkid/forkid.go
Felix Lange 689486449d build: use golangci-lint (#20295)
* build: use golangci-lint

This changes build/ci.go to download and run golangci-lint instead
of gometalinter.

* core/state: fix unnecessary conversion

* p2p/simulations: fix lock copying (found by go vet)

* signer/core: fix unnecessary conversions

* crypto/ecies: remove unused function cmpPublic

* core/rawdb: remove unused function print

* core/state: remove unused function xTestFuzzCutter

* core/vm: disable TestWriteExpectedValues in a different way

* core/forkid: remove unused function checksum

* les: remove unused type proofsData

* cmd/utils: remove unused functions prefixedNames, prefixFor

* crypto/bn256: run goimports

* p2p/nat: fix goimports lint issue

* cmd/clef: avoid using unkeyed struct fields

* les: cancel context in testRequest

* rlp: delete unreachable code

* core: gofmt

* internal/build: simplify DownloadFile for Go 1.11 compatibility

* build: remove go test --short flag

* .travis.yml: disable build cache

* whisper/whisperv6: fix ineffectual assignment in TestWhisperIdentityManagement

* .golangci.yml: enable goconst and ineffassign linters

* build: print message when there are no lint issues

* internal/build: refactor download a bit
2019-11-18 10:49:17 +02:00

247 lines
8.9 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package forkid implements EIP-2124 (https://eips.ethereum.org/EIPS/eip-2124).
package forkid
import (
"encoding/binary"
"errors"
"hash/crc32"
"math"
"math/big"
"reflect"
"strings"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
)
var (
// ErrRemoteStale is returned by the validator if a remote fork checksum is a
// subset of our already applied forks, but the announced next fork block is
// not on our already passed chain.
ErrRemoteStale = errors.New("remote needs update")
// ErrLocalIncompatibleOrStale is returned by the validator if a remote fork
// checksum does not match any local checksum variation, signalling that the
// two chains have diverged in the past at some point (possibly at genesis).
ErrLocalIncompatibleOrStale = errors.New("local incompatible or needs update")
)
// ID is a fork identifier as defined by EIP-2124.
type ID struct {
Hash [4]byte // CRC32 checksum of the genesis block and passed fork block numbers
Next uint64 // Block number of the next upcoming fork, or 0 if no forks are known
}
// Filter is a fork id filter to validate a remotely advertised ID.
type Filter func(id ID) error
// NewID calculates the Ethereum fork ID from the chain config and head.
func NewID(chain *core.BlockChain) ID {
return newID(
chain.Config(),
chain.Genesis().Hash(),
chain.CurrentHeader().Number.Uint64(),
)
}
// newID is the internal version of NewID, which takes extracted values as its
// arguments instead of a chain. The reason is to allow testing the IDs without
// having to simulate an entire blockchain.
func newID(config *params.ChainConfig, genesis common.Hash, head uint64) ID {
// Calculate the starting checksum from the genesis hash
hash := crc32.ChecksumIEEE(genesis[:])
// Calculate the current fork checksum and the next fork block
var next uint64
for _, fork := range gatherForks(config) {
if fork <= head {
// Fork already passed, checksum the previous hash and the fork number
hash = checksumUpdate(hash, fork)
continue
}
next = fork
break
}
return ID{Hash: checksumToBytes(hash), Next: next}
}
// NewFilter creates a filter that returns if a fork ID should be rejected or not
// based on the local chain's status.
func NewFilter(chain *core.BlockChain) Filter {
return newFilter(
chain.Config(),
chain.Genesis().Hash(),
func() uint64 {
return chain.CurrentHeader().Number.Uint64()
},
)
}
// NewStaticFilter creates a filter at block zero.
func NewStaticFilter(config *params.ChainConfig, genesis common.Hash) Filter {
head := func() uint64 { return 0 }
return newFilter(config, genesis, head)
}
// newFilter is the internal version of NewFilter, taking closures as its arguments
// instead of a chain. The reason is to allow testing it without having to simulate
// an entire blockchain.
func newFilter(config *params.ChainConfig, genesis common.Hash, headfn func() uint64) Filter {
// Calculate the all the valid fork hash and fork next combos
var (
forks = gatherForks(config)
sums = make([][4]byte, len(forks)+1) // 0th is the genesis
)
hash := crc32.ChecksumIEEE(genesis[:])
sums[0] = checksumToBytes(hash)
for i, fork := range forks {
hash = checksumUpdate(hash, fork)
sums[i+1] = checksumToBytes(hash)
}
// Add two sentries to simplify the fork checks and don't require special
// casing the last one.
forks = append(forks, math.MaxUint64) // Last fork will never be passed
// Create a validator that will filter out incompatible chains
return func(id ID) error {
// Run the fork checksum validation ruleset:
// 1. If local and remote FORK_CSUM matches, compare local head to FORK_NEXT.
// The two nodes are in the same fork state currently. They might know
// of differing future forks, but that's not relevant until the fork
// triggers (might be postponed, nodes might be updated to match).
// 1a. A remotely announced but remotely not passed block is already passed
// locally, disconnect, since the chains are incompatible.
// 1b. No remotely announced fork; or not yet passed locally, connect.
// 2. If the remote FORK_CSUM is a subset of the local past forks and the
// remote FORK_NEXT matches with the locally following fork block number,
// connect.
// Remote node is currently syncing. It might eventually diverge from
// us, but at this current point in time we don't have enough information.
// 3. If the remote FORK_CSUM is a superset of the local past forks and can
// be completed with locally known future forks, connect.
// Local node is currently syncing. It might eventually diverge from
// the remote, but at this current point in time we don't have enough
// information.
// 4. Reject in all other cases.
head := headfn()
for i, fork := range forks {
// If our head is beyond this fork, continue to the next (we have a dummy
// fork of maxuint64 as the last item to always fail this check eventually).
if head > fork {
continue
}
// Found the first unpassed fork block, check if our current state matches
// the remote checksum (rule #1).
if sums[i] == id.Hash {
// Fork checksum matched, check if a remote future fork block already passed
// locally without the local node being aware of it (rule #1a).
if id.Next > 0 && head >= id.Next {
return ErrLocalIncompatibleOrStale
}
// Haven't passed locally a remote-only fork, accept the connection (rule #1b).
return nil
}
// The local and remote nodes are in different forks currently, check if the
// remote checksum is a subset of our local forks (rule #2).
for j := 0; j < i; j++ {
if sums[j] == id.Hash {
// Remote checksum is a subset, validate based on the announced next fork
if forks[j] != id.Next {
return ErrRemoteStale
}
return nil
}
}
// Remote chain is not a subset of our local one, check if it's a superset by
// any chance, signalling that we're simply out of sync (rule #3).
for j := i + 1; j < len(sums); j++ {
if sums[j] == id.Hash {
// Yay, remote checksum is a superset, ignore upcoming forks
return nil
}
}
// No exact, subset or superset match. We are on differing chains, reject.
return ErrLocalIncompatibleOrStale
}
log.Error("Impossible fork ID validation", "id", id)
return nil // Something's very wrong, accept rather than reject
}
}
// checksumUpdate calculates the next IEEE CRC32 checksum based on the previous
// one and a fork block number (equivalent to CRC32(original-blob || fork)).
func checksumUpdate(hash uint32, fork uint64) uint32 {
var blob [8]byte
binary.BigEndian.PutUint64(blob[:], fork)
return crc32.Update(hash, crc32.IEEETable, blob[:])
}
// checksumToBytes converts a uint32 checksum into a [4]byte array.
func checksumToBytes(hash uint32) [4]byte {
var blob [4]byte
binary.BigEndian.PutUint32(blob[:], hash)
return blob
}
// gatherForks gathers all the known forks and creates a sorted list out of them.
func gatherForks(config *params.ChainConfig) []uint64 {
// Gather all the fork block numbers via reflection
kind := reflect.TypeOf(params.ChainConfig{})
conf := reflect.ValueOf(config).Elem()
var forks []uint64
for i := 0; i < kind.NumField(); i++ {
// Fetch the next field and skip non-fork rules
field := kind.Field(i)
if !strings.HasSuffix(field.Name, "Block") {
continue
}
if field.Type != reflect.TypeOf(new(big.Int)) {
continue
}
// Extract the fork rule block number and aggregate it
rule := conf.Field(i).Interface().(*big.Int)
if rule != nil {
forks = append(forks, rule.Uint64())
}
}
// Sort the fork block numbers to permit chronologival XOR
for i := 0; i < len(forks); i++ {
for j := i + 1; j < len(forks); j++ {
if forks[i] > forks[j] {
forks[i], forks[j] = forks[j], forks[i]
}
}
}
// Deduplicate block numbers applying multiple forks
for i := 1; i < len(forks); i++ {
if forks[i] == forks[i-1] {
forks = append(forks[:i], forks[i+1:]...)
i--
}
}
// Skip any forks in block 0, that's the genesis ruleset
if len(forks) > 0 && forks[0] == 0 {
forks = forks[1:]
}
return forks
}