go-pulse/trie/database.go

896 lines
31 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"errors"
"fmt"
"io"
"reflect"
"runtime"
"sync"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
)
var (
memcacheCleanHitMeter = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
memcacheCleanMissMeter = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
memcacheCleanReadMeter = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)
memcacheDirtyHitMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/hit", nil)
memcacheDirtyMissMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/miss", nil)
memcacheDirtyReadMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/read", nil)
memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/write", nil)
memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
memcacheGCSizeMeter = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)
memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
memcacheCommitSizeMeter = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
)
// Database is an intermediate write layer between the trie data structures and
// the disk database. The aim is to accumulate trie writes in-memory and only
// periodically flush a couple tries to disk, garbage collecting the remainder.
//
// Note, the trie Database is **not** thread safe in its mutations, but it **is**
// thread safe in providing individual, independent node access. The rationale
// behind this split design is to provide read access to RPC handlers and sync
// servers even while the trie is executing expensive garbage collection.
type Database struct {
diskdb ethdb.KeyValueStore // Persistent storage for matured trie nodes
cleans *fastcache.Cache // GC friendly memory cache of clean node RLPs
dirties map[common.Hash]*cachedNode // Data and references relationships of dirty trie nodes
oldest common.Hash // Oldest tracked node, flush-list head
newest common.Hash // Newest tracked node, flush-list tail
preimages map[common.Hash][]byte // Preimages of nodes from the secure trie
gctime time.Duration // Time spent on garbage collection since last commit
gcnodes uint64 // Nodes garbage collected since last commit
gcsize common.StorageSize // Data storage garbage collected since last commit
flushtime time.Duration // Time spent on data flushing since last commit
flushnodes uint64 // Nodes flushed since last commit
flushsize common.StorageSize // Data storage flushed since last commit
dirtiesSize common.StorageSize // Storage size of the dirty node cache (exc. metadata)
childrenSize common.StorageSize // Storage size of the external children tracking
preimagesSize common.StorageSize // Storage size of the preimages cache
lock sync.RWMutex
}
// rawNode is a simple binary blob used to differentiate between collapsed trie
// nodes and already encoded RLP binary blobs (while at the same time store them
// in the same cache fields).
type rawNode []byte
func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }
func (n rawNode) EncodeRLP(w io.Writer) error {
_, err := w.Write(n)
return err
}
// rawFullNode represents only the useful data content of a full node, with the
// caches and flags stripped out to minimize its data storage. This type honors
// the same RLP encoding as the original parent.
type rawFullNode [17]node
func (n rawFullNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") }
func (n rawFullNode) EncodeRLP(w io.Writer) error {
var nodes [17]node
for i, child := range n {
if child != nil {
nodes[i] = child
} else {
nodes[i] = nilValueNode
}
}
return rlp.Encode(w, nodes)
}
// rawShortNode represents only the useful data content of a short node, with the
// caches and flags stripped out to minimize its data storage. This type honors
// the same RLP encoding as the original parent.
type rawShortNode struct {
Key []byte
Val node
}
func (n rawShortNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") }
// cachedNode is all the information we know about a single cached trie node
// in the memory database write layer.
type cachedNode struct {
node node // Cached collapsed trie node, or raw rlp data
size uint16 // Byte size of the useful cached data
parents uint32 // Number of live nodes referencing this one
children map[common.Hash]uint16 // External children referenced by this node
flushPrev common.Hash // Previous node in the flush-list
flushNext common.Hash // Next node in the flush-list
}
// cachedNodeSize is the raw size of a cachedNode data structure without any
// node data included. It's an approximate size, but should be a lot better
// than not counting them.
var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size())
// cachedNodeChildrenSize is the raw size of an initialized but empty external
// reference map.
const cachedNodeChildrenSize = 48
// rlp returns the raw rlp encoded blob of the cached trie node, either directly
// from the cache, or by regenerating it from the collapsed node.
func (n *cachedNode) rlp() []byte {
if node, ok := n.node.(rawNode); ok {
return node
}
blob, err := rlp.EncodeToBytes(n.node)
if err != nil {
panic(err)
}
return blob
}
// obj returns the decoded and expanded trie node, either directly from the cache,
// or by regenerating it from the rlp encoded blob.
func (n *cachedNode) obj(hash common.Hash) node {
if node, ok := n.node.(rawNode); ok {
return mustDecodeNode(hash[:], node)
}
return expandNode(hash[:], n.node)
}
// forChilds invokes the callback for all the tracked children of this node,
// both the implicit ones from inside the node as well as the explicit ones
// from outside the node.
func (n *cachedNode) forChilds(onChild func(hash common.Hash)) {
for child := range n.children {
onChild(child)
}
if _, ok := n.node.(rawNode); !ok {
forGatherChildren(n.node, onChild)
}
}
// forGatherChildren traverses the node hierarchy of a collapsed storage node and
// invokes the callback for all the hashnode children.
func forGatherChildren(n node, onChild func(hash common.Hash)) {
switch n := n.(type) {
case *rawShortNode:
forGatherChildren(n.Val, onChild)
case rawFullNode:
for i := 0; i < 16; i++ {
forGatherChildren(n[i], onChild)
}
case hashNode:
onChild(common.BytesToHash(n))
case valueNode, nil, rawNode:
default:
panic(fmt.Sprintf("unknown node type: %T", n))
}
}
// simplifyNode traverses the hierarchy of an expanded memory node and discards
// all the internal caches, returning a node that only contains the raw data.
func simplifyNode(n node) node {
switch n := n.(type) {
case *shortNode:
// Short nodes discard the flags and cascade
return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)}
case *fullNode:
// Full nodes discard the flags and cascade
node := rawFullNode(n.Children)
for i := 0; i < len(node); i++ {
if node[i] != nil {
node[i] = simplifyNode(node[i])
}
}
return node
case valueNode, hashNode, rawNode:
return n
default:
panic(fmt.Sprintf("unknown node type: %T", n))
}
}
// expandNode traverses the node hierarchy of a collapsed storage node and converts
// all fields and keys into expanded memory form.
func expandNode(hash hashNode, n node) node {
switch n := n.(type) {
case *rawShortNode:
// Short nodes need key and child expansion
return &shortNode{
Key: compactToHex(n.Key),
Val: expandNode(nil, n.Val),
flags: nodeFlag{
hash: hash,
},
}
case rawFullNode:
// Full nodes need child expansion
node := &fullNode{
flags: nodeFlag{
hash: hash,
},
}
for i := 0; i < len(node.Children); i++ {
if n[i] != nil {
node.Children[i] = expandNode(nil, n[i])
}
}
return node
case valueNode, hashNode:
return n
default:
panic(fmt.Sprintf("unknown node type: %T", n))
}
}
// Config defines all necessary options for database.
type Config struct {
Cache int // Memory allowance (MB) to use for caching trie nodes in memory
Journal string // Journal of clean cache to survive node restarts
Preimages bool // Flag whether the preimage of trie key is recorded
}
// NewDatabase creates a new trie database to store ephemeral trie content before
// its written out to disk or garbage collected. No read cache is created, so all
// data retrievals will hit the underlying disk database.
func NewDatabase(diskdb ethdb.KeyValueStore) *Database {
return NewDatabaseWithConfig(diskdb, nil)
}
// NewDatabaseWithConfig creates a new trie database to store ephemeral trie content
// before its written out to disk or garbage collected. It also acts as a read cache
// for nodes loaded from disk.
func NewDatabaseWithConfig(diskdb ethdb.KeyValueStore, config *Config) *Database {
var cleans *fastcache.Cache
if config != nil && config.Cache > 0 {
if config.Journal == "" {
cleans = fastcache.New(config.Cache * 1024 * 1024)
} else {
cleans = fastcache.LoadFromFileOrNew(config.Journal, config.Cache*1024*1024)
}
}
db := &Database{
diskdb: diskdb,
cleans: cleans,
dirties: map[common.Hash]*cachedNode{{}: {
children: make(map[common.Hash]uint16),
}},
}
if config == nil || config.Preimages { // TODO(karalabe): Flip to default off in the future
db.preimages = make(map[common.Hash][]byte)
}
return db
}
// DiskDB retrieves the persistent storage backing the trie database.
func (db *Database) DiskDB() ethdb.KeyValueStore {
return db.diskdb
}
// insert inserts a collapsed trie node into the memory database.
// The blob size must be specified to allow proper size tracking.
// All nodes inserted by this function will be reference tracked
// and in theory should only used for **trie nodes** insertion.
func (db *Database) insert(hash common.Hash, size int, node node) {
// If the node's already cached, skip
if _, ok := db.dirties[hash]; ok {
return
}
memcacheDirtyWriteMeter.Mark(int64(size))
// Create the cached entry for this node
entry := &cachedNode{
node: simplifyNode(node),
size: uint16(size),
flushPrev: db.newest,
}
entry.forChilds(func(child common.Hash) {
if c := db.dirties[child]; c != nil {
c.parents++
}
})
db.dirties[hash] = entry
// Update the flush-list endpoints
if db.oldest == (common.Hash{}) {
db.oldest, db.newest = hash, hash
} else {
db.dirties[db.newest].flushNext, db.newest = hash, hash
}
db.dirtiesSize += common.StorageSize(common.HashLength + entry.size)
}
// insertPreimage writes a new trie node pre-image to the memory database if it's
// yet unknown. The method will NOT make a copy of the slice,
// only use if the preimage will NOT be changed later on.
//
// Note, this method assumes that the database's lock is held!
func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
// Short circuit if preimage collection is disabled
if db.preimages == nil {
return
}
// Track the preimage if a yet unknown one
if _, ok := db.preimages[hash]; ok {
return
}
db.preimages[hash] = preimage
db.preimagesSize += common.StorageSize(common.HashLength + len(preimage))
}
// node retrieves a cached trie node from memory, or returns nil if none can be
// found in the memory cache.
func (db *Database) node(hash common.Hash) node {
// Retrieve the node from the clean cache if available
if db.cleans != nil {
if enc := db.cleans.Get(nil, hash[:]); enc != nil {
memcacheCleanHitMeter.Mark(1)
memcacheCleanReadMeter.Mark(int64(len(enc)))
return mustDecodeNode(hash[:], enc)
}
}
// Retrieve the node from the dirty cache if available
db.lock.RLock()
dirty := db.dirties[hash]
db.lock.RUnlock()
if dirty != nil {
memcacheDirtyHitMeter.Mark(1)
memcacheDirtyReadMeter.Mark(int64(dirty.size))
return dirty.obj(hash)
}
memcacheDirtyMissMeter.Mark(1)
// Content unavailable in memory, attempt to retrieve from disk
enc, err := db.diskdb.Get(hash[:])
if err != nil || enc == nil {
return nil
}
if db.cleans != nil {
db.cleans.Set(hash[:], enc)
memcacheCleanMissMeter.Mark(1)
memcacheCleanWriteMeter.Mark(int64(len(enc)))
}
return mustDecodeNode(hash[:], enc)
}
// Node retrieves an encoded cached trie node from memory. If it cannot be found
// cached, the method queries the persistent database for the content.
func (db *Database) Node(hash common.Hash) ([]byte, error) {
// It doesn't make sense to retrieve the metaroot
if hash == (common.Hash{}) {
return nil, errors.New("not found")
}
// Retrieve the node from the clean cache if available
if db.cleans != nil {
if enc := db.cleans.Get(nil, hash[:]); enc != nil {
memcacheCleanHitMeter.Mark(1)
memcacheCleanReadMeter.Mark(int64(len(enc)))
return enc, nil
}
}
// Retrieve the node from the dirty cache if available
db.lock.RLock()
dirty := db.dirties[hash]
db.lock.RUnlock()
if dirty != nil {
memcacheDirtyHitMeter.Mark(1)
memcacheDirtyReadMeter.Mark(int64(dirty.size))
return dirty.rlp(), nil
}
memcacheDirtyMissMeter.Mark(1)
// Content unavailable in memory, attempt to retrieve from disk
enc := rawdb.ReadTrieNode(db.diskdb, hash)
if len(enc) != 0 {
if db.cleans != nil {
db.cleans.Set(hash[:], enc)
memcacheCleanMissMeter.Mark(1)
memcacheCleanWriteMeter.Mark(int64(len(enc)))
}
return enc, nil
}
return nil, errors.New("not found")
}
// preimage retrieves a cached trie node pre-image from memory. If it cannot be
// found cached, the method queries the persistent database for the content.
func (db *Database) preimage(hash common.Hash) []byte {
// Short circuit if preimage collection is disabled
if db.preimages == nil {
return nil
}
// Retrieve the node from cache if available
db.lock.RLock()
preimage := db.preimages[hash]
db.lock.RUnlock()
if preimage != nil {
return preimage
}
return rawdb.ReadPreimage(db.diskdb, hash)
}
// Nodes retrieves the hashes of all the nodes cached within the memory database.
// This method is extremely expensive and should only be used to validate internal
// states in test code.
func (db *Database) Nodes() []common.Hash {
db.lock.RLock()
defer db.lock.RUnlock()
var hashes = make([]common.Hash, 0, len(db.dirties))
for hash := range db.dirties {
if hash != (common.Hash{}) { // Special case for "root" references/nodes
hashes = append(hashes, hash)
}
}
return hashes
}
// Reference adds a new reference from a parent node to a child node.
// This function is used to add reference between internal trie node
// and external node(e.g. storage trie root), all internal trie nodes
// are referenced together by database itself.
func (db *Database) Reference(child common.Hash, parent common.Hash) {
db.lock.Lock()
defer db.lock.Unlock()
db.reference(child, parent)
}
// reference is the private locked version of Reference.
func (db *Database) reference(child common.Hash, parent common.Hash) {
// If the node does not exist, it's a node pulled from disk, skip
node, ok := db.dirties[child]
if !ok {
return
}
// If the reference already exists, only duplicate for roots
if db.dirties[parent].children == nil {
db.dirties[parent].children = make(map[common.Hash]uint16)
db.childrenSize += cachedNodeChildrenSize
} else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) {
return
}
node.parents++
db.dirties[parent].children[child]++
if db.dirties[parent].children[child] == 1 {
db.childrenSize += common.HashLength + 2 // uint16 counter
}
}
// Dereference removes an existing reference from a root node.
func (db *Database) Dereference(root common.Hash) {
// Sanity check to ensure that the meta-root is not removed
if root == (common.Hash{}) {
log.Error("Attempted to dereference the trie cache meta root")
return
}
db.lock.Lock()
defer db.lock.Unlock()
nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
db.dereference(root, common.Hash{})
db.gcnodes += uint64(nodes - len(db.dirties))
db.gcsize += storage - db.dirtiesSize
db.gctime += time.Since(start)
memcacheGCTimeTimer.Update(time.Since(start))
memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
}
// dereference is the private locked version of Dereference.
func (db *Database) dereference(child common.Hash, parent common.Hash) {
// Dereference the parent-child
node := db.dirties[parent]
if node.children != nil && node.children[child] > 0 {
node.children[child]--
if node.children[child] == 0 {
delete(node.children, child)
db.childrenSize -= (common.HashLength + 2) // uint16 counter
}
}
// If the child does not exist, it's a previously committed node.
node, ok := db.dirties[child]
if !ok {
return
}
// If there are no more references to the child, delete it and cascade
if node.parents > 0 {
// This is a special cornercase where a node loaded from disk (i.e. not in the
// memcache any more) gets reinjected as a new node (short node split into full,
// then reverted into short), causing a cached node to have no parents. That is
// no problem in itself, but don't make maxint parents out of it.
node.parents--
}
if node.parents == 0 {
// Remove the node from the flush-list
switch child {
case db.oldest:
db.oldest = node.flushNext
db.dirties[node.flushNext].flushPrev = common.Hash{}
case db.newest:
db.newest = node.flushPrev
db.dirties[node.flushPrev].flushNext = common.Hash{}
default:
db.dirties[node.flushPrev].flushNext = node.flushNext
db.dirties[node.flushNext].flushPrev = node.flushPrev
}
// Dereference all children and delete the node
node.forChilds(func(hash common.Hash) {
db.dereference(hash, child)
})
delete(db.dirties, child)
db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
if node.children != nil {
db.childrenSize -= cachedNodeChildrenSize
}
}
}
// Cap iteratively flushes old but still referenced trie nodes until the total
// memory usage goes below the given threshold.
//
// Note, this method is a non-synchronized mutator. It is unsafe to call this
// concurrently with other mutators.
func (db *Database) Cap(limit common.StorageSize) error {
// Create a database batch to flush persistent data out. It is important that
// outside code doesn't see an inconsistent state (referenced data removed from
// memory cache during commit but not yet in persistent storage). This is ensured
// by only uncaching existing data when the database write finalizes.
nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
batch := db.diskdb.NewBatch()
// db.dirtiesSize only contains the useful data in the cache, but when reporting
// the total memory consumption, the maintenance metadata is also needed to be
// counted.
size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*cachedNodeSize)
size += db.childrenSize - common.StorageSize(len(db.dirties[common.Hash{}].children)*(common.HashLength+2))
// If the preimage cache got large enough, push to disk. If it's still small
// leave for later to deduplicate writes.
flushPreimages := db.preimagesSize > 4*1024*1024
if flushPreimages {
if db.preimages == nil {
log.Error("Attempted to write preimages whilst disabled")
} else {
rawdb.WritePreimages(batch, db.preimages)
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
}
}
}
// Keep committing nodes from the flush-list until we're below allowance
oldest := db.oldest
for size > limit && oldest != (common.Hash{}) {
// Fetch the oldest referenced node and push into the batch
node := db.dirties[oldest]
rawdb.WriteTrieNode(batch, oldest, node.rlp())
// If we exceeded the ideal batch size, commit and reset
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Error("Failed to write flush list to disk", "err", err)
return err
}
batch.Reset()
}
// Iterate to the next flush item, or abort if the size cap was achieved. Size
// is the total size, including the useful cached data (hash -> blob), the
// cache item metadata, as well as external children mappings.
size -= common.StorageSize(common.HashLength + int(node.size) + cachedNodeSize)
if node.children != nil {
size -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
}
oldest = node.flushNext
}
// Flush out any remainder data from the last batch
if err := batch.Write(); err != nil {
log.Error("Failed to write flush list to disk", "err", err)
return err
}
// Write successful, clear out the flushed data
db.lock.Lock()
defer db.lock.Unlock()
if flushPreimages {
if db.preimages == nil {
log.Error("Attempted to reset preimage cache whilst disabled")
} else {
db.preimages, db.preimagesSize = make(map[common.Hash][]byte), 0
}
}
for db.oldest != oldest {
node := db.dirties[db.oldest]
delete(db.dirties, db.oldest)
db.oldest = node.flushNext
db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
if node.children != nil {
db.childrenSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
}
}
if db.oldest != (common.Hash{}) {
db.dirties[db.oldest].flushPrev = common.Hash{}
}
db.flushnodes += uint64(nodes - len(db.dirties))
db.flushsize += storage - db.dirtiesSize
db.flushtime += time.Since(start)
memcacheFlushTimeTimer.Update(time.Since(start))
memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
return nil
}
// Commit iterates over all the children of a particular node, writes them out
// to disk, forcefully tearing down all references in both directions. As a side
// effect, all pre-images accumulated up to this point are also written.
//
// Note, this method is a non-synchronized mutator. It is unsafe to call this
// concurrently with other mutators.
func (db *Database) Commit(node common.Hash, report bool, callback func(common.Hash)) error {
// Create a database batch to flush persistent data out. It is important that
// outside code doesn't see an inconsistent state (referenced data removed from
// memory cache during commit but not yet in persistent storage). This is ensured
// by only uncaching existing data when the database write finalizes.
start := time.Now()
batch := db.diskdb.NewBatch()
// Move all of the accumulated preimages into a write batch
if db.preimages != nil {
rawdb.WritePreimages(batch, db.preimages)
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
}
// Since we're going to replay trie node writes into the clean cache, flush out
// any batched pre-images before continuing.
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
}
// Move the trie itself into the batch, flushing if enough data is accumulated
nodes, storage := len(db.dirties), db.dirtiesSize
uncacher := &cleaner{db}
if err := db.commit(node, batch, uncacher, callback); err != nil {
log.Error("Failed to commit trie from trie database", "err", err)
return err
}
// Trie mostly committed to disk, flush any batch leftovers
if err := batch.Write(); err != nil {
log.Error("Failed to write trie to disk", "err", err)
return err
}
// Uncache any leftovers in the last batch
db.lock.Lock()
defer db.lock.Unlock()
batch.Replay(uncacher)
batch.Reset()
// Reset the storage counters and bumped metrics
if db.preimages != nil {
db.preimages, db.preimagesSize = make(map[common.Hash][]byte), 0
}
memcacheCommitTimeTimer.Update(time.Since(start))
memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
logger := log.Info
if !report {
logger = log.Debug
}
logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
// Reset the garbage collection statistics
db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0
return nil
}
// commit is the private locked version of Commit.
func (db *Database) commit(hash common.Hash, batch ethdb.Batch, uncacher *cleaner, callback func(common.Hash)) error {
// If the node does not exist, it's a previously committed node
node, ok := db.dirties[hash]
if !ok {
return nil
}
var err error
node.forChilds(func(child common.Hash) {
if err == nil {
err = db.commit(child, batch, uncacher, callback)
}
})
if err != nil {
return err
}
// If we've reached an optimal batch size, commit and start over
rawdb.WriteTrieNode(batch, hash, node.rlp())
if callback != nil {
callback(hash)
}
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return err
}
db.lock.Lock()
batch.Replay(uncacher)
batch.Reset()
db.lock.Unlock()
}
return nil
}
// cleaner is a database batch replayer that takes a batch of write operations
// and cleans up the trie database from anything written to disk.
type cleaner struct {
db *Database
}
// Put reacts to database writes and implements dirty data uncaching. This is the
// post-processing step of a commit operation where the already persisted trie is
// removed from the dirty cache and moved into the clean cache. The reason behind
// the two-phase commit is to ensure ensure data availability while moving from
// memory to disk.
func (c *cleaner) Put(key []byte, rlp []byte) error {
hash := common.BytesToHash(key)
// If the node does not exist, we're done on this path
node, ok := c.db.dirties[hash]
if !ok {
return nil
}
// Node still exists, remove it from the flush-list
switch hash {
case c.db.oldest:
c.db.oldest = node.flushNext
c.db.dirties[node.flushNext].flushPrev = common.Hash{}
case c.db.newest:
c.db.newest = node.flushPrev
c.db.dirties[node.flushPrev].flushNext = common.Hash{}
default:
c.db.dirties[node.flushPrev].flushNext = node.flushNext
c.db.dirties[node.flushNext].flushPrev = node.flushPrev
}
// Remove the node from the dirty cache
delete(c.db.dirties, hash)
c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
if node.children != nil {
c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
}
// Move the flushed node into the clean cache to prevent insta-reloads
if c.db.cleans != nil {
c.db.cleans.Set(hash[:], rlp)
memcacheCleanWriteMeter.Mark(int64(len(rlp)))
}
return nil
}
func (c *cleaner) Delete(key []byte) error {
panic("not implemented")
}
// Size returns the current storage size of the memory cache in front of the
// persistent database layer.
func (db *Database) Size() (common.StorageSize, common.StorageSize) {
db.lock.RLock()
defer db.lock.RUnlock()
// db.dirtiesSize only contains the useful data in the cache, but when reporting
// the total memory consumption, the maintenance metadata is also needed to be
// counted.
var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize)
var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2))
return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize
}
// saveCache saves clean state cache to given directory path
// using specified CPU cores.
func (db *Database) saveCache(dir string, threads int) error {
if db.cleans == nil {
return nil
}
log.Info("Writing clean trie cache to disk", "path", dir, "threads", threads)
start := time.Now()
err := db.cleans.SaveToFileConcurrent(dir, threads)
if err != nil {
log.Error("Failed to persist clean trie cache", "error", err)
return err
}
log.Info("Persisted the clean trie cache", "path", dir, "elapsed", common.PrettyDuration(time.Since(start)))
return nil
}
// SaveCache atomically saves fast cache data to the given dir using all
// available CPU cores.
func (db *Database) SaveCache(dir string) error {
return db.saveCache(dir, runtime.GOMAXPROCS(0))
}
// SaveCachePeriodically atomically saves fast cache data to the given dir with
// the specified interval. All dump operation will only use a single CPU core.
func (db *Database) SaveCachePeriodically(dir string, interval time.Duration, stopCh <-chan struct{}) {
ticker := time.NewTicker(interval)
defer ticker.Stop()
for {
select {
case <-ticker.C:
db.saveCache(dir, 1)
case <-stopCh:
return
}
}
}