mirror of
https://gitlab.com/pulsechaincom/prysm-pulse.git
synced 2025-01-17 23:38:46 +00:00
0c3586a8ea
* Add proto array fork choice object to RPC * Add pb * Add pb * Expose proto array store object * Test * Merge branch 'forkchoice-endpoint' of github.com:prysmaticlabs/prysm into forkchoice-endpoint * s/Nodes/nodes * Remove proto from gitignore * More implementations of GetProtoArrayForkChoice * Comments * Use hex * Gazelle * GetForkChoice Test * Remove pb.go * Merge branch 'master' into forkchoice-endpoint * Typo, thanks Raul! * Merge branch 'forkchoice-endpoint' of github.com:prysmaticlabs/prysm into forkchoice-endpoint
384 lines
12 KiB
Go
384 lines
12 KiB
Go
package protoarray
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
|
|
"github.com/prysmaticlabs/prysm/shared/params"
|
|
"go.opencensus.io/trace"
|
|
)
|
|
|
|
// head starts from justified root and then follows the best descendant links
|
|
// to find the best block for head.
|
|
func (s *Store) head(ctx context.Context, justifiedRoot [32]byte) ([32]byte, error) {
|
|
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.head")
|
|
defer span.End()
|
|
|
|
// Justified index has to be valid in node indices map, and can not be out of bound.
|
|
justifiedIndex, ok := s.NodeIndices[justifiedRoot]
|
|
if !ok {
|
|
return [32]byte{}, errUnknownJustifiedRoot
|
|
}
|
|
if justifiedIndex >= uint64(len(s.Nodes)) {
|
|
return [32]byte{}, errInvalidJustifiedIndex
|
|
}
|
|
|
|
justifiedNode := s.Nodes[justifiedIndex]
|
|
bestDescendantIndex := justifiedNode.BestDescendent
|
|
// If the justified node doesn't have a best descendent,
|
|
// the best node is itself.
|
|
if bestDescendantIndex == NonExistentNode {
|
|
bestDescendantIndex = justifiedIndex
|
|
}
|
|
if bestDescendantIndex >= uint64(len(s.Nodes)) {
|
|
return [32]byte{}, errInvalidBestDescendantIndex
|
|
}
|
|
|
|
bestNode := s.Nodes[bestDescendantIndex]
|
|
|
|
if !s.viableForHead(bestNode) {
|
|
return [32]byte{}, fmt.Errorf("head at slot %d with weight %d is not eligible, FinalizedEpoch %d != %d, JustifiedEpoch %d != %d",
|
|
bestNode.Slot, bestNode.Weight/10e9, bestNode.FinalizedEpoch, s.FinalizedEpoch, bestNode.JustifiedEpoch, s.JustifiedEpoch)
|
|
}
|
|
|
|
// Update metrics.
|
|
if bestNode.Root != lastHeadRoot {
|
|
headChangesCount.Inc()
|
|
headSlotNumber.Set(float64(bestNode.Slot))
|
|
lastHeadRoot = bestNode.Root
|
|
}
|
|
|
|
return bestNode.Root, nil
|
|
}
|
|
|
|
// insert registers a new block node to the fork choice store's node list.
|
|
// It then updates the new node's parent with best child and descendant node.
|
|
func (s *Store) insert(ctx context.Context,
|
|
slot uint64,
|
|
root [32]byte,
|
|
parent [32]byte,
|
|
graffiti [32]byte,
|
|
justifiedEpoch uint64, finalizedEpoch uint64) error {
|
|
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.insert")
|
|
defer span.End()
|
|
|
|
s.nodeIndicesLock.Lock()
|
|
defer s.nodeIndicesLock.Unlock()
|
|
|
|
// Return if the block has been inserted into Store before.
|
|
if _, ok := s.NodeIndices[root]; ok {
|
|
return nil
|
|
}
|
|
|
|
index := len(s.Nodes)
|
|
parentIndex, ok := s.NodeIndices[parent]
|
|
// Mark genesis block's parent as non existent.
|
|
if !ok {
|
|
parentIndex = NonExistentNode
|
|
}
|
|
|
|
n := &Node{
|
|
Slot: slot,
|
|
Root: root,
|
|
Graffiti: graffiti,
|
|
Parent: parentIndex,
|
|
JustifiedEpoch: justifiedEpoch,
|
|
FinalizedEpoch: finalizedEpoch,
|
|
BestChild: NonExistentNode,
|
|
BestDescendent: NonExistentNode,
|
|
Weight: 0,
|
|
}
|
|
|
|
s.NodeIndices[root] = uint64(index)
|
|
s.Nodes = append(s.Nodes, n)
|
|
|
|
// Update parent with the best child and descendent only if it's available.
|
|
if n.Parent != NonExistentNode {
|
|
if err := s.updateBestChildAndDescendant(parentIndex, uint64(index)); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Update metrics.
|
|
processedBlockCount.Inc()
|
|
nodeCount.Set(float64(len(s.Nodes)))
|
|
|
|
return nil
|
|
}
|
|
|
|
// applyWeightChanges iterates backwards through the Nodes in store. It checks all Nodes parent
|
|
// and its best child. For each node, it updates the weight with input delta and
|
|
// back propagate the Nodes delta to its parents delta. After scoring changes,
|
|
// the best child is then updated along with best descendant.
|
|
func (s *Store) applyWeightChanges(ctx context.Context, justifiedEpoch uint64, finalizedEpoch uint64, delta []int) error {
|
|
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.applyWeightChanges")
|
|
defer span.End()
|
|
|
|
// The length of the Nodes can not be different than length of the delta.
|
|
if len(s.Nodes) != len(delta) {
|
|
return errInvalidDeltaLength
|
|
}
|
|
|
|
// Update the justified / finalized epochs in store if necessary.
|
|
if s.JustifiedEpoch != justifiedEpoch || s.FinalizedEpoch != finalizedEpoch {
|
|
s.JustifiedEpoch = justifiedEpoch
|
|
s.FinalizedEpoch = finalizedEpoch
|
|
}
|
|
|
|
// Iterate backwards through all index to node in store.
|
|
for i := len(s.Nodes) - 1; i >= 0; i-- {
|
|
n := s.Nodes[i]
|
|
|
|
// There is no need to adjust the balances or manage parent of the zero hash, it
|
|
// is an alias to the genesis block.
|
|
if n.Root == params.BeaconConfig().ZeroHash {
|
|
continue
|
|
}
|
|
|
|
nodeDelta := delta[i]
|
|
|
|
if nodeDelta < 0 {
|
|
// A node's weight can not be negative but the delta can be negative.
|
|
if int(n.Weight)+nodeDelta < 0 {
|
|
n.Weight = 0
|
|
} else {
|
|
// Subtract node's weight.
|
|
n.Weight -= uint64(math.Abs(float64(nodeDelta)))
|
|
}
|
|
} else {
|
|
// Add node's weight.
|
|
n.Weight += uint64(nodeDelta)
|
|
}
|
|
|
|
s.Nodes[i] = n
|
|
|
|
// Update parent's best child and descendent if the node has a known parent.
|
|
if n.Parent != NonExistentNode {
|
|
// Protection against node parent index out of bound. This should not happen.
|
|
if int(n.Parent) >= len(delta) {
|
|
return errInvalidParentDelta
|
|
}
|
|
// Back propagate the Nodes delta to its parent.
|
|
delta[n.Parent] += nodeDelta
|
|
if err := s.updateBestChildAndDescendant(n.Parent, uint64(i)); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// updateBestChildAndDescendant updates parent node's best child and descendent.
|
|
// It looks at input parent node and input child node and potentially modifies parent's best
|
|
// child and best descendent indices.
|
|
// There are four outcomes:
|
|
// 1.) The child is already the best child but it's now invalid due to a FFG change and should be removed.
|
|
// 2.) The child is already the best child and the parent is updated with the new best descendant.
|
|
// 3.) The child is not the best child but becomes the best child.
|
|
// 4.) The child is not the best child and does not become best child.
|
|
func (s *Store) updateBestChildAndDescendant(parentIndex uint64, childIndex uint64) error {
|
|
// Protection against parent index out of bound, this should not happen.
|
|
if parentIndex >= uint64(len(s.Nodes)) {
|
|
return errInvalidNodeIndex
|
|
}
|
|
parent := s.Nodes[parentIndex]
|
|
|
|
// Protection against child index out of bound, again this should not happen.
|
|
if childIndex >= uint64(len(s.Nodes)) {
|
|
return errInvalidNodeIndex
|
|
}
|
|
child := s.Nodes[childIndex]
|
|
|
|
// Is the child viable to become head? Based on justification and finalization rules.
|
|
childLeadsToViableHead, err := s.leadsToViableHead(child)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Define 3 variables for the 3 outcomes mentioned above. This is to
|
|
// set `parent.BestChild` and `parent.bestDescendent` to. These
|
|
// aliases are to assist readability.
|
|
changeToNone := []uint64{NonExistentNode, NonExistentNode}
|
|
bestDescendant := child.BestDescendent
|
|
if bestDescendant == NonExistentNode {
|
|
bestDescendant = childIndex
|
|
}
|
|
changeToChild := []uint64{childIndex, bestDescendant}
|
|
noChange := []uint64{parent.BestChild, parent.BestDescendent}
|
|
newParentChild := make([]uint64, 0)
|
|
|
|
if parent.BestChild != NonExistentNode {
|
|
if parent.BestChild == childIndex && !childLeadsToViableHead {
|
|
// If the child is already the best child of the parent but it's not viable for head,
|
|
// we should remove it. (Outcome 1)
|
|
newParentChild = changeToNone
|
|
} else if parent.BestChild == childIndex {
|
|
// If the child is already the best child of the parent, set it again to ensure best
|
|
// descendent of the parent is updated. (Outcome 2)
|
|
newParentChild = changeToChild
|
|
} else {
|
|
// Protection against parent's best child going out of bound.
|
|
if parent.BestChild > uint64(len(s.Nodes)) {
|
|
return errInvalidBestDescendantIndex
|
|
}
|
|
bestChild := s.Nodes[parent.BestChild]
|
|
// Is current parent's best child viable to be head? Based on justification and finalization rules.
|
|
bestChildLeadsToViableHead, err := s.leadsToViableHead(bestChild)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if childLeadsToViableHead && !bestChildLeadsToViableHead {
|
|
// The child leads to a viable head, but the current parent's best child doesnt.
|
|
newParentChild = changeToChild
|
|
} else if !childLeadsToViableHead && bestChildLeadsToViableHead {
|
|
// The child doesn't lead to a viable head, the current parent's best child does.
|
|
newParentChild = noChange
|
|
} else if child.Weight == bestChild.Weight {
|
|
// If both are viable, compare their weights.
|
|
// Tie-breaker of equal weights by Root.
|
|
if bytes.Compare(child.Root[:], bestChild.Root[:]) > 0 {
|
|
newParentChild = changeToChild
|
|
} else {
|
|
newParentChild = noChange
|
|
}
|
|
} else {
|
|
// Choose winner by weight.
|
|
if child.Weight > bestChild.Weight {
|
|
newParentChild = changeToChild
|
|
} else {
|
|
newParentChild = noChange
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if childLeadsToViableHead {
|
|
// If parent doesn't have a best child and the child is viable.
|
|
newParentChild = changeToChild
|
|
} else {
|
|
// If parent doesn't have a best child and the child is not viable.
|
|
newParentChild = noChange
|
|
}
|
|
}
|
|
|
|
// Update parent with the outcome.
|
|
parent.BestChild = newParentChild[0]
|
|
parent.BestDescendent = newParentChild[1]
|
|
s.Nodes[parentIndex] = parent
|
|
|
|
return nil
|
|
}
|
|
|
|
// prune prunes the store with the new finalized root. The tree is only
|
|
// pruned if the input finalized root are different than the one in stored and
|
|
// the number of the Nodes in store has met prune threshold.
|
|
func (s *Store) prune(ctx context.Context, finalizedRoot [32]byte) error {
|
|
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.prune")
|
|
defer span.End()
|
|
|
|
s.nodeIndicesLock.Lock()
|
|
defer s.nodeIndicesLock.Unlock()
|
|
|
|
// The node would have seen finalized root or else it'd
|
|
// be able to prune it.
|
|
finalizedIndex, ok := s.NodeIndices[finalizedRoot]
|
|
if !ok {
|
|
return errUnknownFinalizedRoot
|
|
}
|
|
|
|
// The number of the Nodes has not met the prune threshold.
|
|
// Pruning at small numbers incurs more cost than benefit.
|
|
if finalizedIndex < s.PruneThreshold {
|
|
return nil
|
|
}
|
|
|
|
// Remove the key/values from indices mapping on to be pruned Nodes.
|
|
// These Nodes are before the finalized index.
|
|
for i := uint64(0); i < finalizedIndex; i++ {
|
|
if int(i) >= len(s.Nodes) {
|
|
return errInvalidNodeIndex
|
|
}
|
|
delete(s.NodeIndices, s.Nodes[i].Root)
|
|
}
|
|
|
|
// Finalized index can not be greater than the length of the node.
|
|
if int(finalizedIndex) >= len(s.Nodes) {
|
|
return errors.New("invalid finalized index")
|
|
}
|
|
s.Nodes = s.Nodes[finalizedIndex:]
|
|
|
|
// Adjust indices to node mapping.
|
|
for k, v := range s.NodeIndices {
|
|
s.NodeIndices[k] = v - finalizedIndex
|
|
}
|
|
|
|
// Iterate through existing Nodes and adjust its parent/child indices with the newly pruned layout.
|
|
for i, node := range s.Nodes {
|
|
if node.Parent != NonExistentNode {
|
|
// If the node's parent is less than finalized index, set it to non existent.
|
|
if node.Parent >= finalizedIndex {
|
|
node.Parent -= finalizedIndex
|
|
} else {
|
|
node.Parent = NonExistentNode
|
|
}
|
|
}
|
|
if node.BestChild != NonExistentNode {
|
|
if node.BestChild < finalizedIndex {
|
|
return errInvalidBestChildIndex
|
|
}
|
|
node.BestChild -= finalizedIndex
|
|
}
|
|
if node.BestDescendent != NonExistentNode {
|
|
if node.BestDescendent < finalizedIndex {
|
|
return errInvalidBestDescendantIndex
|
|
}
|
|
node.BestDescendent -= finalizedIndex
|
|
}
|
|
|
|
s.Nodes[i] = node
|
|
}
|
|
|
|
prunedCount.Inc()
|
|
|
|
return nil
|
|
}
|
|
|
|
// leadsToViableHead returns true if the node or the best descendent of the node is viable for head.
|
|
// Any node with diff finalized or justified epoch than the ones in fork choice store
|
|
// should not be viable to head.
|
|
func (s *Store) leadsToViableHead(node *Node) (bool, error) {
|
|
var bestDescendentViable bool
|
|
bestDescendentIndex := node.BestDescendent
|
|
|
|
// If the best descendant is not part of the leaves.
|
|
if bestDescendentIndex != NonExistentNode {
|
|
// Protection against out of bound, best descendent index can not be
|
|
// exceeds length of Nodes list.
|
|
if bestDescendentIndex >= uint64(len(s.Nodes)) {
|
|
return false, errInvalidBestDescendantIndex
|
|
}
|
|
|
|
bestDescendentNode := s.Nodes[bestDescendentIndex]
|
|
bestDescendentViable = s.viableForHead(bestDescendentNode)
|
|
}
|
|
|
|
// The node is viable as long as the best descendent is viable.
|
|
return bestDescendentViable || s.viableForHead(node), nil
|
|
}
|
|
|
|
// viableForHead returns true if the node is viable to head.
|
|
// Any node with diff finalized or justified epoch than the ones in fork choice store
|
|
// should not be viable to head.
|
|
func (s *Store) viableForHead(node *Node) bool {
|
|
// `node` is viable if its justified epoch and finalized epoch are the same as the one in `Store`.
|
|
// It's also viable if we are in genesis epoch.
|
|
justified := s.JustifiedEpoch == node.JustifiedEpoch || s.JustifiedEpoch == 0
|
|
finalized := s.FinalizedEpoch == node.FinalizedEpoch || s.FinalizedEpoch == 0
|
|
|
|
return justified && finalized
|
|
}
|