prysm-pulse/sharding/contracts/validator_manager.sol
Fynn 621e769692 constant variables & no need for sigGasLimit
Former-commit-id: c36b63e78bc0bb6d05763605f443d99fc6370eb4 [formerly 5ed2b7fa9a7640ea93fc05b7351da95f10a5b6b9]
Former-commit-id: ccd55ddcc878e4d1bcd3e71102f88de23982a427
2018-01-30 10:24:32 +01:00

328 lines
11 KiB
Solidity

pragma solidity ^0.4.19;
import "RLP.sol";
interface SigHasherContract {
// function () returns(bytes32);
}
contract VMC {
using RLP for RLP.RLPItem;
using RLP for RLP.Iterator;
using RLP for bytes;
struct Validator {
// Amount of wei the validator holds
uint deposit;
// The validator's address
address addr;
// Addess to withdraw to
address returnAddr;
// The cycle number which the validator would be included after
int cycle;
}
struct CollationHeader {
bytes32 parentCollationHash;
int score;
}
struct Receipt {
int shardId;
uint txStartgas;
uint txGasprice;
uint value;
address sender;
address to;
bytes32 data;
}
mapping (int => Validator) validators;
mapping (int => mapping (bytes32 => CollationHeader)) collationHeaders;
mapping (int => Receipt) receipts;
mapping (int => bytes32) shardHead;
int numValidators;
int numReceipts;
// Indexs of empty slots caused by the function `withdraw`
mapping (int => int) emptySlotsStack;
// The top index of the stack in empty_slots_stack
int emptySlotsStackTop;
// Is a valcode addr deposited now?
mapping (address => bool) isValcodeDeposited;
// Constant values
uint constant periodLength = 5;
int constant numValidatorsPerCycle = 100;
int constant shardCount = 100;
// The exact deposit size which you have to deposit to become a validator
uint constant depositSize = 100 ether;
// Any given validator randomly gets allocated to some number of shards every SHUFFLING_CYCLE
int constant shufflingCycleLength = 5; // FIXME: just modified temporarily for test;
bytes32 addHeaderLogTopic;
SigHasherContract sighasher;
// Log the latest period number of the shard
mapping (int => int) periodHead;
function VMC() public {
numValidators = 0;
emptySlotsStackTop = 0;
addHeaderLogTopic = keccak256("add_header()");
sighasher = SigHasherContract(0xDFFD41E18F04Ad8810c83B14FD1426a82E625A7D);
}
function isStackEmpty() internal view returns(bool) {
return emptySlotsStackTop == 0;
}
function stackPush(int index) internal {
emptySlotsStack[emptySlotsStackTop] = index;
++emptySlotsStackTop;
}
function stackPop() internal returns(int) {
if (isStackEmpty())
return -1;
--emptySlotsStackTop;
return emptySlotsStack[emptySlotsStackTop];
}
function getValidatorsMaxIndex() public view returns(int) {
int activateValidatorNum = 0;
int currentCycle = int(block.number) / shufflingCycleLength;
int allValidatorSlotsNum = numValidators + emptySlotsStackTop;
// TODO: any better way to iterate the mapping?
for (int i = 0; i < 1024; ++i) {
if (i >= allValidatorSlotsNum)
break;
if (validators[i].cycle <= currentCycle)
activateValidatorNum += 1;
}
return activateValidatorNum + emptySlotsStackTop;
}
function deposit(address _returnAddr) public payable returns(int) {
require(!isValcodeDeposited[msg.sender]);
require(msg.value == depositSize);
// Find the empty slot index in validators set
int index;
int nextCycle = 0;
if (!isStackEmpty())
index = stackPop();
else {
index = int(numValidators);
nextCycle = (int(block.number) / shufflingCycleLength) + 1;
validators[index] = Validator({
deposit: msg.value,
addr: msg.sender,
returnAddr: _returnAddr,
cycle: nextCycle
});
}
++numValidators;
isValcodeDeposited[msg.sender] = true;
log2(keccak256("deposit()"), bytes32(msg.sender), bytes32(index));
return index;
}
function withdraw(int _validatorIndex) public {
var msgHash = keccak256("withdraw");
require(msg.sender == validators[_validatorIndex].addr);
validators[_validatorIndex].returnAddr.transfer(validators[_validatorIndex].deposit);
isValcodeDeposited[validators[_validatorIndex].addr] = false;
delete validators[_validatorIndex];
stackPush(_validatorIndex);
--numValidators;
log1(msgHash, bytes32(_validatorIndex));
}
function sample(int _shardId) public constant returns(address) {
require(block.number >= periodLength);
var cycle = int(block.number) / shufflingCycleLength;
int cycleStartBlockNumber = cycle * shufflingCycleLength - 1;
if (cycleStartBlockNumber < 0)
cycleStartBlockNumber = 0;
int cycleSeed = int(block.blockhash(uint(cycleStartBlockNumber)));
// originally, error occurs when block.number <= 4 because
// `seed_block_number` becomes negative in these cases.
int seed = int(block.blockhash(block.number - (block.number % uint(periodLength)) - 1));
uint indexInSubset = uint(keccak256(seed, bytes32(_shardId))) % uint(numValidatorsPerCycle);
uint validatorIndex = uint(keccak256(cycleSeed, bytes32(_shardId), bytes32(indexInSubset))) % uint(getValidatorsMaxIndex());
if (validators[int(validatorIndex)].cycle > cycle)
return 0x0;
else
return validators[int(validatorIndex)].addr;
}
// Get all possible shard ids that the given _valcodeAddr
// may be sampled in the current cycle
function getShardList(address _validatorAddr) public constant returns(bool[shardCount]) {
bool[shardCount] memory shardList;
int cycle = int(block.number) / shufflingCycleLength;
int cycleStartBlockNumber = cycle * shufflingCycleLength - 1;
if (cycleStartBlockNumber < 0)
cycleStartBlockNumber = 0;
var cycleSeed = block.blockhash(uint(cycleStartBlockNumber));
int validatorsMaxIndex = getValidatorsMaxIndex();
if (numValidators != 0) {
for (uint8 shardId = 0; shardId < shardCount; ++shardId) {
shardList[shardId] = false;
for (uint8 possibleIndexInSubset = 0; possibleIndexInSubset < shardCount; ++possibleIndexInSubset) {
uint validatorIndex = uint(keccak256(cycleSeed, bytes32(shardId), bytes32(possibleIndexInSubset)))
% uint(validatorsMaxIndex);
if (_validatorAddr == validators[int(validatorIndex)].addr) {
shardList[shardId] = true;
break;
}
}
}
}
return shardList;
}
struct Header {
int shardId;
uint expectedPeriodNumber;
bytes32 periodStartPrevhash;
bytes32 parentCollationHash;
bytes32 txListRoot;
address collationCoinbase;
bytes32 postStateRoot;
bytes32 receiptRoot;
int collationNumber;
bytes sig;
}
function addHeader(bytes _header) public returns(bool) {
// require(_header.length <= 4096);
// TODO
// values = RLPList(header, [num, num, bytes32, bytes32, bytes32, address, bytes32, bytes32, num, bytes])
// return True
bytes memory mHeader = _header;
var RLPList = mHeader.toRLPItem(true).iterator();
var header = Header({
shardId: RLPList.next().toInt(),
expectedPeriodNumber: RLPList.next().toUint(),
periodStartPrevhash: RLPList.next().toBytes32(),
parentCollationHash: RLPList.next().toBytes32(),
txListRoot: RLPList.next().toBytes32(),
collationCoinbase: RLPList.next().toAddress(),
postStateRoot: RLPList.next().toBytes32(),
receiptRoot: RLPList.next().toBytes32(),
collationNumber: RLPList.next().toInt(),
sig: RLPList.next().toBytes()
});
// Check if the header is valid
require((header.shardId >= 0) && (header.shardId < shardCount));
require(block.number >= periodLength);
require(header.expectedPeriodNumber == (block.number / periodLength));
require(header.periodStartPrevhash == block.blockhash(header.expectedPeriodNumber * periodLength - 1));
// Check if this header already exists
var entireHeaderHash = keccak256(header);
assert(entireHeaderHash != 0x0);
assert(collationHeaders[header.shardId][entireHeaderHash].score == 0);
// Check whether the parent exists.
// if (parent_collation_hash == 0), i.e., is the genesis,
// then there is no need to check.
if (header.parentCollationHash != 0x0)
assert ((header.parentCollationHash == 0x0) || (collationHeaders[header.shardId][header.parentCollationHash].score > 0));
// Check if only one colllation in one period
assert (periodHead[header.shardId] < int(header.expectedPeriodNumber));
// Check the signature with validation_code_addr
var collatorValcodeAddr = sample(header.shardId);
if (collatorValcodeAddr == 0x0)
return false;
// assembly {
// TODO next block
// }
// sighash = extract32(raw_call(self.sighasher_addr, header, gas=200000, outsize=32), 0)
// assert extract32(raw_call(collator_valcode_addr, concat(sighash, sig), gas=self.sig_gas_limit, outsize=32), 0) == as_bytes32(1)
// Check score == collation_number
var _score = collationHeaders[header.shardId][header.parentCollationHash].score + 1;
assert(header.collationNumber == _score);
// Add the header
collationHeaders[header.shardId][entireHeaderHash] = CollationHeader({
parentCollationHash: header.parentCollationHash,
score: _score
});
// Update the latest period number
periodHead[header.shardId] = int(header.expectedPeriodNumber);
// Determine the head
if (_score > collationHeaders[header.shardId][shardHead[header.shardId]].score) {
var previousHeadHash = shardHead[header.shardId];
shardHead[header.shardId] = entireHeaderHash;
// Logs only when `change_head` happens due to the fork
// TODO LOG
// log1([addHeaderLogTopic, keccak256("change_head"), entireHeaderHash], previousHeadHash);
}
// Emit log
// TODO LOG
// log1(addHeaderLogTopic, _header);
return true;
}
function getPeriodStartPrevhash(uint _expectedPeriodNumber) public constant returns(bytes32) {
uint blockNumber = _expectedPeriodNumber * periodLength - 1;
require(block.number > blockNumber);
return block.blockhash(blockNumber);
}
// Returns the difference between the block number of this hash and the block
// number of the 10000th ancestor of this hash.
function getAncestorDistance(bytes32 /*_hash*/) public pure returns(bytes32) {
// TODO
}
// Returns the gas limit that collations can currently have (by default make
// this function always answer 10 million).
function getCollationGasLimit() public pure returns(uint) {
return 10000000;
}
// Records a request to deposit msg.value ETH to address to in shard shard_id
// during a future collation. Saves a `receipt ID` for this request,
// also saving `msg.sender`, `msg.value`, `to`, `shard_id`, `startgas`,
// `gasprice`, and `data`.
function txToShard(address _to, int _shardId, uint _txStartgas, uint _txGasprice, bytes12 _data) public payable returns(int) {
receipts[numReceipts] = Receipt({
shardId: _shardId,
txStartgas: _txStartgas,
txGasprice: _txGasprice,
value: msg.value,
sender: msg.sender,
to: _to,
data: _data
});
var receiptId = numReceipts;
++numReceipts;
log3(keccak256("tx_to_shard()"), bytes32(_to), bytes32(_shardId), bytes32(receiptId));
return receiptId;
}
function updataGasPrice(int _receiptId, uint _txGasprice) public payable returns(bool) {
require(receipts[_receiptId].sender == msg.sender);
receipts[_receiptId].txGasprice = _txGasprice;
return true;
}
}